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Abstract. For a given crystal structure, say body-centred-cubic, the many-body Hamiltonian H in which
nuclear and electron motions are to be treated from the outset on the same footing, has parameters, for
the elements, which can be classified as (i) atomic mass M , (ii) atomic number Z, characterizing the
external potential in which electrons move, and (iii) bcc lattice spacing, or equivalently one can utilize
atomic volume, Ω. Since the thermodynamic quantities can be determined from H , we conclude that Tc,
the superconducting transition temperature, when it is non-zero, may be formally expressed as Tc =

T
(M)
c (Z, Ω). One piece of evidence in support is that, in an atomic number vs. atomic volume graph, the

superconducting elements lie in a well defined region. Two other relevant points are that (a) Tc is related
by BCS theory, though not simply, to the Debye temperature, which in turn is calculable from the elastic
constants C11, C12, and C44, the atomic weight and the atomic volume, and (b) Tc for five bcc transition
metals is linear in the Cauchy deviation C∗ = (C12 −C44)/(C12 +C44). Finally, via elastic constants, mass
density and atomic volume, a correlation between C∗ and the Debye temperature is established for the
five bcc transition elements.

PACS. 74.62.-c Transition temperature variations – 74.70.Ad Metals; alloys and binary compounds

1 Background and outline

We have recently been concerned with both empirical and
theoretical relations between the superconducting tran-
sition temperature Tc of high-Tc cuprates and of heavy
Fermion materials [1–3]. The generally complex crystallo-
graphic structure of such compounds makes it difficult to
identify useful correlations between their superconducting
properties (such as Tc) and the elastic properties of the
lattice. This is not the case of several superconducting
elements with a definite and relatively simple crystallo-
graphic structure, e.g. characterized by only a few non-
zero components of the elastic tensor. Although any such
correlation applying to the ‘simple’ superconducting ele-
ments may not be immediately generalized to other un-
conventional superconductors, they are anyway expected
to focus on the relevant variables which would be worth-
while studying, both experimentally and theoretically, also
in the new classes of superconductors.

Following the Bardeen-Cooper-Schrieffer (BCS) the-
ory [4] of the metallic elements, firmly rooted in electron-
phonon interaction as the basic mechanism resulting in
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the formation of Cooper pairs, questions have come up
regarding the role of strong electron-electron interactions
in both the high-Tc cuprates and heavy Fermion systems.

Here, our basic philosophy will be to insist that if we
were able to solve the many-body Schrödinger equation
for the (considered infinite) superconducting materials,
then by treating the motion of nuclei and electrons on the
same footing, plus full inclusion of electron-electron inter-
actions, such uncertainties involved in separating electron-
lattice and Coulomb repulsions between electrons would
be bypassed.

Having said that, let us take as the simplest start-
ing point the metallic elements. Then, the input infor-
mation into any computer programme to treat these ele-
ments would be as follows. First, of course, we should need
to specify the structure. To be definite, below we shall
single out the body-centred cubic (bcc) lattice, but every-
thing that follows would be equally applicable to the more
closely packed face-centred cubic (fcc) structure. Once the
structure is specified, one would need to insert the atomic
volume Ω (or, of course, essentially equivalently, the lat-
tice parameter a). Then, the external potential created by
the nuclei must be specified, which requires the atomic
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number Z as further input. Since one has a many-body
Hamiltonian containing both electron and nuclear kinetic
energies, one needs also the nuclear mass M . Of course, we
take as obvious the input additionally of the fundamental
constants h and e, plus the electronic mass m.

The conclusion from the many-body Hamiltonian is
therefore that, for a specified structure which we take to
be bcc for reasons that will emerge below, the supercon-
ducting transition temperature Tc, given from the many-
body partition function once the Schrödinger equation has
been solved depends, apart from the given fundamental
constants h, e and m, on M , Z and Ω, that is

Tc = T (M)
c (Z, Ω). (1)

Of course, for all other classes of superconductors than the
metallic elements we have more than one atomic number,
possibly the next simplest case being the alkali-doped ful-
lerides (see some brief comments in Sect. 5).

With this as background, the outline of the paper is
as follows. Section 2 picks out specifically five bcc super-
conducting transition elements, W, Mo, Ta, V and Nb.
Two more elements, Cr and Fe, have low temperature bcc
structures but exhibit cooperative magnetism at low tem-
peratures (antiferro- and ferro-magnetism, respectively)
and are not superconductors at the lowest temperature
they have yet been subjected to. The five elements listed
above are considered in the (Ω, Z) plane with respect to
their transition temperatures, the reduced isotope effects
being taken as evidence that in equation (1) there is, at
most, a weak and therefore relatively unimportant de-
pendence of Tc on nuclear isotopic mass. Since even then
Tc = T

(M)
c (Z, Ω) presents problems in its representation,

Section 3 reintroduces a classification of the above five
elements in which Tc is related to the Cauchy discrep-
ancy, i.e. the departure of C12 from C44, where these are
two of the three elastic constants (C11 being the other)
required to characterize a cubic crystal. Section 4 then
returns to an essential ingredient of BCS theory, and by
using a semiempirical approach throws light on the way
the Cauchy deviation relates to the Debye temperature.
Section 5 constitutes a summary, plus some proposals for
further studies, both theoretical and experimental, which
should prove fruitful. An appendix considers zero temper-
ature properties, and in particular critical field Hc(0) and
energy gap Eg(0), as functions of the Cauchy discrepancy.

2 Dependence of Tc on atomic number
Z and atomic volume Ω in bcc transition
elements

In Figure 1, a plot is made of the positions of the five ele-
ments in the (Ω, Z) plane, the values of Tc being attached
to these coordinates.

That both Ω and Z are important variables in
characterizing Tc is immediately apparent. As to the func-
tional form Tc(Ω, Z), one can comment that: (i) For con-
stant atomic volume, Tc markedly decreases with increas-
ing atomic number. (ii) For constant Z, there is plainly
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Fig. 1. Shows five superconducting bcc transition elements
in the (Ω, Z) plane. Actual abscissa is the reciprocal of the
atomic volume, Ω−1. To each point, the value of the critical
temperature Tc is attached.

Table 1. Pressure derivatives of Tc [5], experimental bulk mod-
uli [6], and inferred partial derivatives of Tc with respect to Ω
at constant Z, equation (2), of the bcc superconducting tran-
sition metals at P = 0.

Element W Mo Ta V Nb

∂Tc

∂P
[K/GPa] — −1.4 −2.6 6.3 −2.0

B [GPa] 323 272 200 162 170

∂Tc

∂Ω
[1031K m−3] — 2.4 2.9 −7.4 1.9

substantial variation of Tc with atomic volume, which is
proportional to the reciprocal of the concentration. Rel-
evant to such variation is the pressure dependence of Tc

for a given element, provided one remains within the bcc
phase.

Despite high pressure can turn many elements into
superconductors via an insulator-metal transition, Tc

usually decreases with increasing pressure for most
superconducting elements at ambient pressure (see
Tab. 1). Within BCS theory [see also Eq. (5) below]
or its extension by McMillan, this is usually justified
in terms of a pressure-induced lattice stiffening, which
reduces the electron-phonon constant at a more rapid
rate than the electron density of states at the Fermi
level is increased [7]. Pressure derivatives of Tc can then
be straightforwardly related to volume derivatives (at
constant Z) from the relation

∂ log Tc

∂ log Ω
= −B

∂ log Tc

∂P
, (2)

where B is the bulk modulus (see Tab. 1).
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However, even given some knowledge of these partial
derivatives, the fact that Tc depends apparently in a sen-
sitive way on these two variables for the chosen bcc struc-
ture leaves open the detailed form of the function Tc(Ω, Z)
for this structure. Therefore in the following section we ap-
peal to a known, but so far rather neglected, correlation
between Tc and the Cauchy discrepancy C12 − C44 be-
tween elastic constants. This is important for our present
study, since it is clear that Tc can, in fact, be characterized
by a single variable, rather than the pair (Ω, Z) used in
Figure 1.

3 Characterization of Tc by the Cauchy
discrepancy for the five bcc transition
elements

Figure 2, redrawn from the work of Ledbetter [8] carried
out almost a quarter of a century ago, shows a plot of
Tc versus the quantity C∗ defined by

C∗ =
C12 − C44

C12 + C44
. (3)

Ledbetter [8] also included some alloys, namely Nb0.9Zr0.1,
Nb0.4Ti0.6, and Ti0.7V0.3, but we have omitted these from
the redrawn Figure 2, even though the alloys support the
general trend of the correlation shown. Also, the points for
the bcc elements Cr and Fe have been omitted, since these
elements are both characterized by magnetic order and
no superconductivity in normal conditions. It should be
mentioned, however, that a high-pressure, non-magnetic,
but also a non-bcc phase of iron has been recently reported
to display superconductivity with Tc < 2 K between 15
and 30 GPa [9].

The equation of the straight line drawn in Figure 2 is

Tc [K] = AC∗ − B, (4)

with A = 17.7 K and B = 1.65 K. Though presently we do
not have theory to allow the evaluation of A and B from
first principles, the correlation in equation (4) leads us, in
the following section, to attempt to relate C∗ to a basic
ingredient of BCS theory, the Debye temperature ΘD.

4 Cauchy discrepancy related to ΘD, which
gives the ‘scale’ of Tc in the BCS theory

As Allen and Mitrovic [10] have stressed, notwithstand-
ing the numerous impressive and successful predictions
for the metallic elements of BCS theory, their formula (see
Ref. [10], Eq. (2.29))

Tc = 1.13ΘD exp
(
− 1

N(EF)V

)
, (5)

where N(EF) is the density of states at the Fermi level
and V is the electron-phonon coupling constant, is not a
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Fig. 2. Superconducting critical temperatures for bcc tran-
sition elements correlated with Cauchy discrepancy, equa-
tion (3). Solid line is best fit to the points [see text for dis-
cussion, in particular Eq. (4)]. Redrawn from reference [8] (see
also [6] for an update on elastic constants data).

successful way of correlating values of Tc for the metal-
lic elements. Nevertheless, it suggests that one should re-
open empirically the question of a correlation between Tc

and ΘD. Therefore, more generally than for the bcc tran-
sition metals, we have redrawn data by de Launay and
Dolecek [11] in Figure 3 (top panel), adding values for W
and Mo.

While, for mainly non-transition elements, the contin-
uous line drawn in Figure 3 (top panel), already given by
de Launay and Dolecek [11] a decade before BCS theory,
shows a relation between Tc and ΘD, it is far from simple.
And the triangle involving Ta, V and Nb modified from
the 1947 figure of de Launay and Dolecek [11] shows no
relation to the continuous curve.

Nevertheless, ΘD lies deeply enough in first principles
theory to enquire whether it can be connected, albeit not
simply, with the Cauchy deviation C∗, which is much more
directly related to Tc, as shown in the previous section.

To attempt this, we note that numerous earlier work-
ers have calculated the Debye temperature for cubic
crystals from knowledge of the elastic constants C11,
C12 and C44, the mass density and the atomic vol-
ume Ω. While Houston’s method [12] is favoured, and
has been developed by Betts et al. [13,14], we have found
the semi-empirical relation of Blackman [15], quoted in
Huntington’s review article [16], a useful starting point.
This reads

Θ3
D =

3.15
8π

(
h

kB

)3
s

ρ
3
2 Ω

×(C11 − C12)
1
2 (C11 + C12 + 2C44)

1
2 C

1
2
44, (6)

where s is the number of atoms in the unit cell and ρ is
the mass density. This approximate result, equation (6),
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Fig. 3. Top: Superconducting transition temperatures versus
Debye temperatures for numerous elements. Redrawn after ref-
erence [11]. Solid and dashed lines are guides to the eye. See
text for discussion. Bottom: Same as Figure 1, but now with

attached values of square root C
1
2 of the ‘average’ elastic con-

stant, as defined by equation (7), in GPa
1
2 .

motivates the definition of an ‘average’ elastic constant

C =
(

8π

3.15

) 2
3

(
kB

h

)2
ρΩ

2
3

s
2
3

Θ2
D, (7)

and Figure 3 (bottom panel) parallels Figure 1 except that
coordinates in the (Ω, Z) plane are now labelled by C

1
2 .

Evidently from this figure at constant volume Ω, C
1
2 re-

lated to ΘD through equation (7) increases with increas-
ing Z, in contrast to the behaviour of Tc in Figure 1.
Also at constant Z, C

1
2 increases with decreasing atomic

volume. Nevertheless, again prompted by the BCS the-
ory, we have sought to correlate C

1
2 with Tc, but now

via the Cauchy discrepancy. Figure 4 shows, for the five
bcc elements, that there is indeed a marked correlation,
the functional form obtained empirically being recorded
in the caption.
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Fig. 4. Shows ‘average’ elastic constant C, equation (7), as a
function of Cauchy discrepancy C∗, equation (3), for the five
bcc transition metals. Dashed line is a guide for the eye, which
actually employs an exponential functional form, of the kind
C = α + β exp(−γC∗), with α = 80.5 GPa, β = 1008.9 GPa,
γ = 12.5.

5 Summary and directions for future work

Though the top panel of Figure 3 makes it quite clear
that there is no simple relation between Debye temper-
ature ΘD and the superconducting temperature Tc, we
have been led, via the considerations from Figures 1 and 3
(lower panel), to attempt to correlate C, having dimen-
sions of an elastic constant and defined in equation (7),
which in turn involved ΘD, with the Cauchy discrepancy
C∗ in equation (3). These quantities, for the five bcc ele-
ments we have focussed on here, are clearly inter-related,
as Figure 4 demonstrates, and the functional form has
been extracted. Since, as Ledbetter [8] already pointed
out in 1980, Tc relates linearly to C∗ as in Figure 2, there
is a clear correlation between Tc and ΘD, with mass den-
sity and atomic volume entering through the definition
of the ‘average’ elastic constant in equation (7). Further-
more, and again motivated by BCS theory, zero tempera-
ture quantities, namely critical field Hc(0) and energy gap
Eg(0) are shown also to correlate simply with the Cauchy
discrepancy C∗ for the five bcc superconducting transition
elements in Figures 5 and 6.

The present work stimulates thoughts concerning gen-
eralization of the basic approach set out here to other
groups of superconductors. Our view is that the next
simplest class to study is the alkali-doped C60 com-
pounds, the fullerides, which have been reviewed by
Gunnarsson [17]. In Figure 3 of this review, Gunnarsson
has plotted Tc for Rb3C60 and K3C60, as a function of lat-
tice parameter, which was varied by applying pressure, P .
There is a remarkably linear increase in Tc with P . For
Na2RbxCs1−xC60 there is again a linear variation of Tc

with lattice parameter, but with a much steeper slope. It
will be of interest for the future to attempt a generaliza-
tion of the approach given here for the metallic elements
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Fig. 5. Experimental results for critical field Hc(0) and en-
ergy gap Eg(0), as extracted from tunnelling measurements,
vs. Cauchy discrepancy C∗, as defined in equation (3).
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Fig. 6. BCS ratio Eg(0)/kBTc for bcc transition elements.
Solid line is ratio of equations (4) and (9), while dashed line is
BCS theoretical value.

to the fullerides, in view of these striking correlations be-
tween Tc and lattice parameter.

G.G.N.A. thanks the Department of Physics, University of
Antwerp, for much hospitality.

Appendix A: Zero temperature properties,
related by BCS theory to Tc, as functions
of Cauchy discrepancy C∗

The purpose of this appendix is to display a marked corre-
lation between experimentally estimated values of the crit-
ical field Hc(0) and the energy Eg(0), as extracted from
tunnelling experiments, and the Cauchy discrepancy C∗,
equation (3). Thus, the upper panel of Figure 5 shows
Hc(0) plotted against C∗ for the five bcc transition ele-
ments on which attention was focussed in the body of the

text. The data for Hc(0) have been taken from Kittel’s
book [18] (see also [19]). Evidently, as for Tc in Figure 2,
a marked correlation again exists, the dashed line having
the equation

Hc(0) = b1C
∗ − b2, (8)

with b1 = 0.41 tesla and b2 = 0.05 tesla.
The energy gap Eg(0), as estimated from tunnelling

experiments, has again been taken from data given by
Kittel [18] (see also [5]), and is shown in the lower panel
of Figure 5 for the same set of bcc transition elements.
The dashed line, but now with more substantial scatter of
the experimental points than for either Tc or Hc(0), has
the equation

Eg(0) = e1C
∗ − e2, (9)

with e1 = 55.8 × 10−4 eV and e2 = 5.16 × 10−4 eV.
BCS theory predicts a constant value for the ratio

Eg(0)/kBTc. Since equations (4) and (9), respectively, give
a reasonable overall fit for the five bcc transition elements
focussed on in the present study, we have finally plotted
the ‘average’ ratio Eg(0)/kBTc from equations (4) and (9)
as a function of C∗ in Figure 6 using the given parame-
ters A, B, e1 and e2.
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